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Abstract

Estimating the generator of a continuous-time Markov jump process based on incomplete data is a problem which
arises in various applications ranging from machine learning to molecular dynamics. Several methods have been devised
for this purpose: a quadratic programming approach (cf. [D.T. Crommelin, E. Vanden-Eijnden, Fitting timeseries by con-
tinuous-time Markov chains: a quadratic programming approach, J. Comp. Phys. 217 (2006) 782–805]), a resolvent
method (cf. [T. Müller, Modellierung von Proteinevolution, PhD thesis, Heidelberg, 2001]), and various implementations
of an expectation-maximization algorithm ([S. Asmussen, O. Nerman, M. Olsson, Fitting phase-type distributions via the
EM algorithm, Scand. J. Stat. 23 (1996) 419–441; I. Holmes, G.M. Rubin, An expectation maximization algorithm for
training hidden substitution models, J. Mol. Biol. 317 (2002) 753–764; U. Nodelman, C.R. Shelton, D. Koller, Expectation
maximization and complex duration distributions for continuous time Bayesian networks, in: Proceedings of the twenty-
first conference on uncertainty in AI (UAI), 2005, pp. 421–430; M. Bladt, M. Sørensen, Statistical inference for discretely
observed Markov jump processes, J.R. Statist. Soc. B 67 (2005) 395–410]). Some of these methods, however, seem to be
known only in a particular research community, and have later been reinvented in a different context. The purpose of this
paper is to compile a catalogue of existing approaches, to compare the strengths and weaknesses, and to test their perfor-
mance in a series of numerical examples. These examples include carefully chosen model problems and an application to a
time series from molecular dynamics.
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1. Introduction

Let {X(t), t P 0} be a continuous-time Markov jump process on a finite state space S @ {1, . . .,d}. Only
time-homogeneous Markov processes will be considered, i.e. we assume that
PðX ðt þ sÞ ¼ jjX ðtÞ ¼ iÞ ¼ PðX ðsÞ ¼ jjX ð0Þ ¼ iÞ

for all states i, j 2 S and all t,s P 0. The transition matrix of {X(t), t P 0} is the time-dependent matrix
P ðtÞ ¼ ðpijðtÞÞi;j 2 Rd�d ; pijðtÞ ¼ PðX ðtÞ ¼ jjX ð0Þ ¼ iÞ
containing the transition probabilities pij(t). If the limit
L ¼ lim
t!0

PðtÞ � Id
t

exists, then the transition matrix can be expressed as the matrix exponential
P ðtÞ ¼ expðtLÞ ¼
X1
k¼0

tk

k!
Lk
and L is called the infinitesimal generator of the Markov process fX ðtÞ; t P 0g. A matrix L 2 Rd�d generates a
continuous-time Markov process if and only if all off-diagonal entries are nonnegative and the sum over each
row equals zero. The set of generators will be denoted by
G ¼ L ¼ ðlijÞi;j 2 Rd�d : lij P 0 for all i 6¼ j; lii ¼ �
X
j 6¼i

lij

( )
: ð1Þ
In this article, we consider the problem of how to determine the generator if only a finite sampling
Y = {y0 = X(t0), . . .,yN = X(tN)} of a process at discrete times t0, t1, . . ., tN is available. Several difficulties must
be taken into account. First, from a finite number of samples it is impossible to tell if the underlying process is
actually Markovian. Second, it is not clear if the observed data originates indeed from discrete samples of a
continuous-time Markov chain with some generator L, or rather from a discrete-time Markov chain which
cannot be embedded into a time-continuous counterpart. In the latter case, a generator does not exist because
the transition matrix of the discrete chain does not belong to the set
P ¼ fP 2 Rd�d : there is a L 2 G such that P ¼ expðLÞg:

It is well-known that P is a subset of all stochastic matrices, but the so-called embedding problem, i.e. the ques-
tion what characterizes the elements of P, is widely open for d > 3 (cf. [1,2] and references therein). A third
difficulty is the fact that the matrix exponential function is not injective if the eigenvalues of the generator
are complex. Hence, some matrices P 2 P can be represented as P ¼ expðLÞ ¼ expðLÞ with two different gen-
erators L 6¼ L. And finally, the question whether the time points tn of the observations are equidistant plays an
important role. In case of a constant time lag s = tn+1 � tn an estimate of the transition matrix P(s) is available
by counting the number of transitions between each pair of states, but in case of variable time lags the sampled
data is typically not sufficient for reasonable approximations of the transition matrix.

Due to these problems the above question has to be modified: how can we find the generator that ‘‘agrees best’’
with a finite observation Y = {y0 = X(t0), . . .,yN = X(tN)} of a process? Several methods have been proposed for
this purpose [2,19,18,3,1], but since the problem has been investigated in the context of rather different applica-
tions, some of these papers apparently remained unknown outside the corresponding research community or
were at least not cited. Some methods have later been reinvented, such as the expectation-maximization algo-
rithm introduced in [19] in 1996 and later by [1] in 2005. This may partly be due to the fact that even the termi-
nology varies largely form paper to paper – for example, the generator is often called (transition) rate matrix (cf.
[18]), substitution matrix (cf. [20]), intensity matrix (cf. [1]), or ‘‘matrix of transition intensities’’ (cf. [17]).

In this article, we present a concise – but not necessarily complete – review of approaches to generator esti-
mation. We explain how each method works, discuss their pros and cons, evaluate their performance by
numerical examples, and explain in which sense the ‘‘agreement’’ of the approximative generator with the data
has to be understood in each case. In Section 2, we briefly sketch the resolvent method advocated, e.g., in [3].
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However, since the output of this method is in general not a generator matrix, it will later be excluded from the
comparison. Section 3 resumes the quadratic programming approach introduced in [2]. In Section 4, we dis-
cuss several methods for the computation of maximum likelihood estimators and the expectation-maximiza-
tion algorithms proposed, e.g., in [19,17,18,1]. Furthermore, we derive a version of the EM-algorithm which is
adapted to the reversible case. Numerical examples are presented in Section 5. The performance of the meth-
ods is illustrated by carefully chosen model problems and by an application to a large system arising from
molecular dynamics. In the last section, we discuss and summarize the numerical results and give an outlook
on a generalization of an enhanced expectation-maximization method to the case of varying time lags.

2. Resolvent method

For any generator L 2 G the parameter-dependent matrix
RðaÞ ¼ ðaI � LÞ�1
; a > 0 ð2Þ
is called the resolvent of L. The inverse exists for all a > 0 since the real parts of the eigenvalues of a generator
L 2 G are non-positive. An alternative formula representing the resolvent in terms of the transition matrix
P(t) = exp(tL) is given by the Laplace transform
RðaÞ ¼
Z 1

0

expð�atÞP ðtÞdt; a > 0: ð3Þ
The existence of the integral is due to the fact that iP(t)i = 1 for all t P 0, and the equivalence of (3) and (2)
follows from
ðaI � LÞRðaÞ ¼ �
Z 1

0

d

dt
ðexpð�atÞP ðtÞÞdt ¼ I :
The main idea of the resolvent method is to approximate the resolvent using its integral representation (3) and
then to estimate the underlying generator via the identity
L ¼ aId � R�1ðaÞ: ð4Þ

Computing the integral in (3), however, requires an approximation of the transition matrix P(t). Suppose that
the process X(t) has been observed at equidistant time points tn = ns with some fixed time lag s > 0 and
n = 0, . . .,N. Let
cðkÞij ¼
XN�k

n¼0

vðX ðtnÞ ¼ iÞvðX ðtnþkÞ ¼ jÞ ð5Þ
be the number of observed transitions from state i to state j within the time interval of length ks. Here and
below, v denotes the characteristic function. The matrix CðkÞ ¼ ðcðkÞij Þi;j 2 Nd�d is called the frequency matrix
with respect to the time interval [0,ks], and a simple estimate eP ðkÞ � P ðtkÞ is provided by
eP ðkÞ ¼ ~pðkÞij

� �
i;j

with entries ~pðkÞij ¼
cðkÞijPd
j¼1cðkÞij

: ð6Þ
In the approach of [5,3] these estimates are used to approximate P(t) in the interval [tn,tn+1] by linear
interpolation:
P ðtÞ � PðtnÞ þ ðt � tnÞ
P ðtnþ1Þ � P ðtnÞ

s
� eP ðnÞ þ ðt � tnÞ

eP ðnþ1Þ � eP ðnÞ
s

:

Substituting this into the integral representation (3) gives
RðaÞ ¼
Xm�1

n¼0

Z tnþ1

tn

expð�asÞP ðsÞdsþ
Z 1

tm

expð�asÞP ðsÞds

�
Xm�1

n¼0

Z tnþ1

tn

expð�asÞ eP ðnÞ þ ðs� tnÞ
eP ðnþ1Þ � eP ðnÞ

s

 !
dsþ

Z 1

tm

expð�asÞP ðtmÞds: ð7Þ
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Since all integrals in (7) can be solved analytically, this yields an approximation eRðaÞ � RðaÞ to the resolvent.
If eRðaÞ is invertible, then Eq. (4) yields an estimate eLðaÞ ¼ aId � eR�1ðaÞ for the generator. Of course, the esti-
mate depends on the particular choice of a, but the optimal value of a can be determined by a maximum like-
lihood approach; see [5,3] for details.

It can easily be shown that for any a the entries ~lðaÞii of the estimated generator eLðaÞ satisfy the condition
~lðaÞii ¼ �

P
j 6¼i

~lðaÞij . However, eLðaÞ is in general not a generator in the sense of (1), because eLðaÞ can contain neg-
ative or even complex off-diagonal elements. This happens if some of the estimated transition matrices eP ðnÞ do
not belong to the set P. In [3], this obstacle did not appear because the resolvent method was applied to prob-
lems where the transition matrices could assumed to be calibrated (i.e. close to identity in some sense). In a
general situation, however, the fact that eLðaÞ 62 G is a severe drawback of the resolvent method.

3. Quadratic optimization method

In contrast to the resolvent method, the approach introduced by Crommelin and Vanden-Eijnden [2] yields
an estimate that does belong to the set G: As in the previous chapter, first an approximative transition matrixeP ð1Þ � P ðt1Þ ¼ P ðsÞ is computed by Eq. (6). Now suppose an eigendecomposition
eP ð1Þ ¼ UKU�1 ð8Þ

with a diagonal matrix K = diag(k1, . . .,kd) containing the eigenvalues exists, and that kk 6¼ 0 for all k. (Note
that U�1 can be obtained without explicit matrix inversion since its rows are the left eigenvectors of eP ð1Þ.)
Then, the matrix
eL ¼ UZU�1 with Z ¼ diagðz1; . . . ; zdÞ; zk ¼

logðkkÞ
s

ð9Þ
can be defined, and the approximative transition matrix can be expressed in terms of the matrix exponential
expðseLÞ ¼ expðU logðKÞU�1Þ ¼ UKU�1 ¼ eP ð1Þ:

In spite of this relation, eL cannot be considered as a reasonable estimate for the generator because eL 62 G in
many cases. In order to find an estimate with the correct structural properties, Crommelin and Vanden-Eijn-
den propose to compute the generator eL 2 G which agrees best with the eigendecomposition (9). This is moti-
vated by the fact that many properties of a continuous-time Markov chain (such as, e.g., its stationary
distribution) depend strongly on the eigenvalues and eigenvectors of its generator. Therefore, in [2] the gen-
erator is estimated by solving the quadratic minimization problem
eLQP ¼ arg min
L2G

Xd

k¼1

ðakjU�1
k L� zkU�1

k j
2 þ bkjLU k � zkU kj2 þ ckjU�1

k LU k � zkj2Þ ð10Þ
where Uk denotes the kth column of U, U�1
k is the kth row of U�1, and
ak ¼ akjzkU�1
k j
�2
; bk ¼ bkjzkUkj�2 and ck ¼ ckjzkj�2
are weights with suitably chosen coefficients ak, bk, ck. The problem (10) can be solved with a standard qua-
dratic optimizer such as the Matlab quadprog command after reformulating (10) as
eLQP ¼ arg min
L2G

1

2
hL;HLi þ hF ; Li þ E0
with a tensor H 2 Rd�d�d�d and a matrix F 2 Rd�d ; see [2] for details. If d is so large that the tensor H cannot
be stored, the problem (10) can still be solved with quadprog, but this requires a function for the evaluation
of Hv for arbitrary v without composing H explicitly.

4. The maximum likelihood method

In this section, we explain in detail the maximum likelihood method introduced in [19] and elaborated fur-
ther in [1]. The idea behind the maximum likelihood estimation (MLE) method is to find a generator eL such
that it maximizes the discrete likelihood of the given time series.
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4.1. Continuous and discrete likelihood functions

The basis objects in the MLE-method is the continuous and discrete likelihood function. Suppose that the
Markov jump process X(t) has been observed continuously in a certain time interval [0,T]. Let the random
variable Ri(T) be the time the process spent in state i before time T
RiðT Þ ¼
Z T

0

vðX ðsÞ ¼ iÞds
and denote by Nij(T) the number of transitions from state i to state j in the time interval [0, T]. The continuous

time likelihood function Lc of an observed trajectory {Xt: 0 6 t 6 T} is given by [1]
LcðLÞ ¼
Yd

i¼1

Y
j 6¼i

lNijðT Þ
ij expð�lijRiðT ÞÞ; L ¼ ðlijÞ: ð11Þ
By definition, the maximum likelihood estimator (MLE) eL maximizes the likelihood function (11). Exploiting
the monotonicity of the log-function, eL is also the maximizer of
logLcðLÞ ¼
Xd

i¼1

X
j 6¼i

½NijðT Þ logðlijÞ � lijRiðT Þ�; ð12Þ
i.e. eL is the null of the partial derivatives of logLcðLÞ with respect to lij and the Hessian matrix of logLcðLÞ
evaluated at eL is negative definite. A short calculation shows
o logLcðeLÞ
olij

¼ 0() ~lij ¼
N ijðT Þ
RiðT Þ

ð13Þ
and
o logLcðeLÞ
olijolkl

¼ �N ijðT Þ
~l2

ij

vðði; jÞ ¼ ðk; lÞÞ:
In the case where the process has only been observed at discrete time points 0 = t0 < t1 < . . . < tN = T the dis-

crete log-likelihood function Ld of a time series Y = {y0 = X(t0), . . .,yN = X(tN)} is given in terms of the tran-
sition matrix P(t) = exp(tL)
LdðLÞ ¼
Yn�1

k¼0

½pyk ;ykþ1
ðskÞ� ð14Þ
where sk = tk+1 � tk is the time lag between two consecutive observations and pyk ;ykþ1
ðskÞ is the probability that

the process makes a transition from state yk to the state yk+1 in time sk. The discrete likelihood function (14)
simplifies further under the assumption that the time lags sk = s are constant for s > 0,
LdðLÞ ¼
Yd

i;j¼1

½pijðsÞ�
cij ð15Þ
where cij ¼ cð1Þij is the frequency of transitions from state i to state j in the discrete time Markov chain
Y = {y0, . . .,yN} (compare (5)). Even for this simplified case, the derivative of (15) with respect to the entries
of L
o

oL
logLdðLÞ ¼

X1
n¼1

Xn

k¼1

sn

n!
ðLTÞk�1ZðLTÞn�k with Z ¼ ðzijÞi;j2S ; zij ¼ cij= expðsLÞij
has such a complicated form that the null cannot be found analytically. Hence no analytical expression for the
MLE with respect to L is available.
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4.2. Likelihood approach revisited

In the likelihood approach, a generator eL for a given time series is determined such that eL maximizes the
discrete likelihood function (14) for the time series. As pointed out in the previous section the discrete likeli-
hood function Ld does not permit an analytical maximum likelihood estimator. On the other hand, the MLE
(13) for a continuous time observation can be obtained analytically but for an incomplete observation the
information between two consecutive observations is hidden and, hence, the observables Ri(T) and Nij(T)
are unknown. In this situation the expectation-maximization algorithm (EM-algorithm) is a natural choice
because it allows iteratively to approximate a local maximum of Ld by computing the expectation values of
Ri(T) and Nij(T) given the data and a generator guess. To be more precise, an iteration in the EM-algorithm
consists of an expectation step (E-step) and a maximization step (M-step). In the E-step, the conditional expec-
tations of the unknown parts in (11) with respect to the given data and a current guess eL of the MLE are com-
puted, i.e. EeL ½RiðT ÞjY � and EeL ½N ijðT ÞjY �. In the maximization step, a new ‘‘guess’’ of a MLE is constructed via
the maximizer (13) by replacing again the unobserved parts by their respective conditional expectations.

To formalize things, define the conditional log-likelihood function
GðL; eLÞ ¼ EeL ½logLcðLÞjY � ð16Þ
where EeL denotes the conditional expectation with respect to a generator eL. Then, the EM-algorithm basically
works as presented in Algorithm 1.
Algorithm 1 General EM-algorithm

Input: Time series Y = {y0 = X(t0), . . .,yN = X(tN)}, initial guess of generator L0.
Output: MLE eL.

(1) Set eL :¼ L0.
(2) Expectation step (E-step):
Compute the function GðL; eLÞ.

(3) Maximization step (M-Step):
eL ¼ arg maxLGðL; eLÞ

(4) Go to Step (2).
Let eL0; eL1; eL2; . . . be a sequence of generators obtained via the EM-algorithm. Dempster, Laird, and Rubin
proved in [6] that an increase in G implies an increase in the discrete likelihood function
LdðeLkþ1ÞP LdðeLkÞ:

For our particular likelihood function (11) we obtain
GðL; L0Þ ¼
Xd

i¼1

X
j 6¼i

logðlijÞEL0
½NijðT ÞjY � �

Xd

i¼1

X
j 6¼i

lijEL0
½RiðT ÞjY � ð17Þ
and, consequently, the maximizer of (17) is given by
~lij ¼
EL0
½N ijðT ÞjY �

EL0
½RiðT ÞjY �

for all i 6¼ j: ð18Þ
The non-trivial task which remains is to evaluate the conditional expectations EL0
½NijðT ÞjY � and EL0

½RiðT ÞjY �,
respectively. The first step towards their computation is the observation that by the Markov property, the
homogeneity of the Markov jump process and a constant time lag s the conditional expectations in (17)
can be expressed as sums
EL0
½RiðT ÞjY � ¼

Xd

k¼1

Xd

l¼1

cklEL0
RiðsÞjX ðsÞ ¼ l;X ð0Þ ¼ k½ �;

EL0
½N ijðT ÞjY � ¼

Xd

k¼1

Xd

l¼1

cklEL0
½NijðsÞjX ðsÞ ¼ l;X ð0Þ ¼ k�:

ð19Þ



P. Metzner et al. / Journal of Computational Physics 227 (2007) 353–375 359
Next, the conditional expectations in the right hand sides in (19) can be decomposed further by using the
identities
EL½RiðtÞjX ðtÞ ¼ l;X ð0Þ ¼ k� ¼ EL RiðtÞvðX ðtÞ ¼ lÞjX ð0Þ ¼ k½ �
pklðtÞ

;

EL½NijðtÞjX ðtÞ ¼ l;X ð0Þ ¼ k� ¼
EL N ijðtÞvðX ðtÞ ¼ lÞjX ð0Þ ¼ k
� �

pklðtÞ
:

ð20Þ
Finally, the authors in [19,1] realized that the auxiliary functions defined by
Mi
klðtÞ :¼ EL½RiðtÞvðX ðtÞ ¼ lÞjX ð0Þ ¼ k�;

F ij
klðtÞ :¼ EL½NijðtÞvðX ðtÞ ¼ lÞjX ð0Þ ¼ k�

ð21Þ
satisfy systems of ordinary differential equations (ODEs). For example, let i,j 2 S be fixed. Then the vectors
Mi

kðtÞ ¼ ðMi
k1ðtÞ; . . . ;Mi

kdðtÞÞ and F ij
k ðtÞ ¼ ðF

ij
k1ðtÞ; . . . ; F ij

kdðtÞÞ satisfy the two systems of ODEs
d

dt
Mi

kðtÞ ¼ Mi
kðtÞLþ Ai

kðtÞ; Mi
kð0Þ ¼ 0 with Ai

kðtÞ ¼ pkiðtÞei;

d

dt
F ij

k ðtÞ ¼ F ij
k ðtÞLþ Aij

k ðtÞ; F ij
k ð0Þ ¼ 0 with Aij

k ðtÞ ¼ lijpkiðtÞej;

ð22Þ
where ei and ej are the i-th and j-th unit vectors. To summarize, the computation of the function GðL; eLÞ in the
E-step reduces to solving the systems of ODEs given in (22). Solving these ODEs numerically, however, causes
prohibitive computational costs when the number of states of the system is large. Another option is to approx-
imate the matrix-exponentials which are involved in the analytic solutions of (22)
Mi
kðtÞ ¼

Z t

0

Ai
kðsÞ expððt � sÞLÞds;

F ij
k ðtÞ ¼

Z t

0

Aij
k ðsÞ expððt � sÞLÞds

ð23Þ
via the so-called uniformization method [7]. Choose a = maxi=1,. . .,d{ � lii}, and define B = I + a�1L. Then,
e.g., MiðtÞ ¼ ðMi

klðtÞÞk;l2S is given by
MiðtÞ ¼ expð�atÞa�1
X1
n¼0

ðatÞnþ1

ðnþ 1Þ!
Xn

j¼0

BjðeieT
i ÞBn�j:
with eT
i denoting the transpose of the unit vector ei. However, this expansion is fairly time consuming and for

high dimensional matrices intractable. Moreover, the infinite sum has to be cut off at a finite n which entails
inaccuracies. In the next subsection, we show how the left hand sides in (20) can be computed in an more effi-
cient way. To end this subsection we finally state the resulting EM-algorithm 2 due to [19,1].
Algorithm 2 MLE-method according to [19,1]

Input: Time series Y = {y0 = X(t0), . . .,yN = X(tN)}, initial guess of generator L0.

Output: MLE eL.

(1) Set eL :¼ L0.
(2) E-step: Compute for i,j,l,k = 1, . . .,d the conditional expectations
EeL ½RiðsÞjX ðsÞ ¼ l;X ð0Þ ¼ k�,
EeL ½NijðsÞjX ðsÞ ¼ l;X ð0Þ ¼ k�; i 6¼ j via (22), (20)

and

EeL ½RiðT ÞjY � and EeL ½NijðT ÞjY � via (19).
(3) M-Step: Setup the next MLE eL of the generator by

Ee½N ijðT ÞjY �=Ee½RiðT ÞjY �; i 6¼ j
(

~lij ¼ L L

�
P

k 6¼i
~lik; otherwise:
(4) Go to Step (2).
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4.3. Enhanced computation of the maximum likelihood estimator
It was shown in [4] that the conditional expectations EL½NijðtÞjX ðtÞ ¼ l;X ð0Þ ¼ k� and EL½RiðtÞjX ðtÞ ¼ l;
X ð0Þ ¼ k� can analytically be expressed in terms of the generator L. Recalling the notation of the transition
matrix P(s) = exp(sL), the following identities have been proved
EL RiðtÞjX ðtÞ ¼ l;X ð0Þ ¼ k½ � ¼ 1

pklðtÞ

Z t

0

pkiðsÞpilðt � sÞds;

EL½N ijðtÞjX ðtÞ ¼ l;X ð0Þ ¼ k� ¼ lij

pklðtÞ

Z t

0

pkiðsÞpjlðt � sÞds:

ð24Þ
In [18], the Holmes and Rubin derived explicit formulas for the integrals in (24) by using the
eigendecomposition
L ¼ UDkU�1 ð25Þ
of the generator L. Here, the columns of the matrix U consist of all eigenvectors to the corresponding eigen-
values of L in the diagonal matrix Dk = diag(k1, . . .,kd). Consequently, the expression of the transition matrix
P(t) simplifies to
P ðtÞ ¼ expðtLÞ ¼ U expðtDkÞU�1
and we finally end up with a closed form expression of the integrals in (24), that is
Z t

0

pabðsÞpcdðt � sÞds ¼
Xd

p¼1

uapu�1
pb

Xd

q¼1

ucqu�1
qd WpqðtÞ ð26Þ
where the symmetric matrix W(t) = (Wpq(t))p,q2S is defined as
WpqðtÞ ¼
tetkp if kp ¼ kq

etkp�etkq

kp�kq
if kp 6¼ kq:

(
ð27Þ
In many cases, computing the conditional expectations explicitly via the eigendecomposition leads to a con-
siderable speed-up of the method. Therefore, this alternative will be referred to as the enhanced MLE-method.
For the convenience of the reader, this method is summarized in Algorithm 3. In a single iteration step, d2

conditional expectations have to be computed where each one is decomposed into d2 conditional expectations.
Hence, the computational cost of a single iteration step in the Algorithms 2 and 3 is Oðd4 � T EÞ where T E de-
notes the computational cost to compute a single conditional expectation in the E-Step. In many applications,
the frequency matrix C is sparse, i.e., if jCj = j{cij : cij > 0, i,j 2 S}j denotes the number of positive entries in C

then jCj � d2. In this case the computational cost in both algorithms for a single iteration reduces to
OðjCj2 � T EÞ. The numerical considerations in [1] lead to a total computational cost per iteration in Algorithm
2 of at least Oðd6Þ. According to the closed form expressions for the expectations (26), the computational cost
of a single iteration in the enhanced MLE-method (Algorithm 3) is Oðd5Þ which is achieved by a simulta-
neously computation of the unknowns via matrix multiplication. For example, define for a fixed i 2 S the ma-
trix Mi

kl ¼ EL½RiðsÞjX ðsÞ ¼ l;X ð0Þ ¼ k�. Let U�1
i denote the ith row of the matrix U�1 and Ui the ith column of

U. Then Mi can be computed by
Mi ¼ U ½ðU�1
i U iÞ �W�U�1
where A * B is the Hadamard (entrywise) product of two matrices A and B.
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Algorithm 3 Enhanced MLE-method

Input: Time series Y = {y0 = X(t0), . . .,yN = X(tN)}, initial guess of generator L0.

Output: MLE eL.

(1) Set eL :¼ L0.
(2) Compute eigendecomposition (25) of eL.

(3) E-step: Compute for i, j, l,k = 1, . . .,d the conditional expectations
EeL ½RiðsÞjX ðsÞ ¼ l;X ð0Þ ¼ k�,
EeL ½NijðsÞjX ðsÞ ¼ l;X ð0Þ ¼ k�; i 6¼ j via (26),(24)

and
EeL ½RiðT ÞjY �,
EeL ½NijðT ÞjY � via (19).
(4) M-Step: Setup the next MLE eL of the generator by

Ee½N ijðT ÞjY �=Ee½RiðT ÞjY �; i 6¼ j
(

~lij ¼ L L

�
P

k 6¼i
~lik; otherwise:
(5) Go to Step (2).
4.4. Reversible case

In the reversible case the homogeneous Markov jump process, given by its generator L, admits an unique
stationary distribution p = (pi)i2S and, moreover, detailed balance holds:
lji ¼
pi

pj
lij:
This has two important consequences for the EM-algorithm. The first one is that detailed balance guarantees a
special representation of L which improves the stability and accuracy of the EM-algorithm. Furthermore, one
has to take into account that the M-step in general does not preserve the reversibility. To understand the first
issue, notice that L can be written as
L ¼ D�1=2
p SD1=2

p

with a symmetric matrix S which can be decomposed as
S ¼ VDkV T
where k1; . . . ; kd 2 R are the eigenvalues of S and V is an orthogonal matrix, i.e. VVT = I. Combining things,
we end up with [4]
P ðtÞ ¼ D�1=2
p V expðDkÞV TD1=2

p

where D1=2
p ¼ diagð ffiffiffiffiffip1

p
; . . . ;

ffiffiffiffiffi
pd
p Þ. Consequently, the integrals in (24) reduce to [18]
Z t

0

pabðsÞpcdðt � sÞds ¼ pbpd

papc

� �1=2Xd

p¼1

vapvbp

Xd

q¼1

vcqvdqWpqðtÞ ð28Þ
where W is defined in (27). Next, we turn our attention to the problem of the non-preservation of the revers-
ibility in the M-Step. The first idea could be to exploit the fact that detailed balance implies the bisection of the
unknowns because lji is determined by pi, pj and lij. Then one could proceed as follows: firstly, compute the
MLE eL via the EM-algorithm as usual and then define a reversible generator eLR ¼ ð~lR

ij Þi;j2S by
~lR
ij ¼

~lij if i 6 j
pj

pi
~lji otherwise:

(

This would work in principle but it does not guarantee that the resulting generator eLR is the MLE subject to
the space of reversible generators. As a remedy, we include the restriction to that space explicitly in the log-
likelihood function (17) via Lagrange multiplier:
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GRðL; L0Þ ¼ GðL; L0Þ þ
Xd

i¼1

Xd

j>i

lijðpilij � pjljiÞ:
Performing the usual steps, we end up with the MLE eLR, given by
~lR
ij ¼

EL0
NijðT ÞjY
� �

�lijpi þ EL0
½RiðT ÞjY �

; i < j

pi
pj

~lR
ij ; otherwise

8><>: ð29Þ
where the Lagrange multiplier can be determined by
lij ¼
EL0
½RjðT ÞjY �

pjEL0
½NjiðT ÞjY �

� EL0
½RiðT ÞjY �

piEL0
½N ijðT ÞjY �

	 

� � EL0

½NijðT ÞjY � � EL0
½NjiðT ÞjY �

EL0
½NijðT ÞjY � þ EL0

½NjiðT ÞjY �

	 

: ð30Þ
Combining both issues leads to Algorithm 4.
Algorithm 4 Enhanced MLE-method for the reversible case

Input: Time series Y = {y0 = X(t0), . . .,yN = X(tN)}, initial guess of reversible generator LR
0 .

Output: Estimated generator eLR.

(1) Set eLR :¼ LR
0 .

(2) Compute eigendecomposition of eLR.
(3) E-step: Compute the conditional expectations
EeLR
½RiðsÞjX ðsÞ ¼ l;X ð0Þ ¼ k�,

EeLR
½N ijðsÞjX ðsÞ ¼ l;X ð0Þ ¼ k� via (28),(24)

and

EeLR
½RiðT ÞjY �,

EeLR
½N ijðT ÞjY � via (19)
(4) Compute Lagrange multipliers lij via (30)

(5) M-Step: Setup the next MLE eLR of the generator via (29).
(6) Go to Step (2).
4.5. Scaling
We prove that the maximizer (18) in the (enhanced) MLE-method respects the time invariance of the semi-
group P(t) = exp(tL). Consequently, we can estimate a generator eLðs0Þ with respect to s 0 = 1 and regain the
original generator by eLðsÞ ¼ eLð1Þ=s.

Lemma 1. Let eLðsÞ be the MLE with respect to the time lag s and eLð1Þ with respect to s 0 = 1. Then for both cases

the general and the reversible case the following relation holds:
eLðsÞ ¼ 1

s
eLð1Þ: ð31Þ
Proof. A short calculation shows that
Z s

0

pabðsÞpcdðs� sÞds ¼ s
Z 1

0

½expðsLÞabðexpðð1� sÞLÞcd �ds
where L ¼ sL. But this immediately implies
EL½RiðsÞjX ðsÞ ¼ l;X ð0Þ ¼ k� ¼ sEL½Rið1ÞjX ð1Þ ¼ l;X ð0Þ ¼ k�

and, by noting that lij ¼ 1

s
�lij,
EL½N ijðsÞjX ðsÞ ¼ l;X ð0Þ ¼ k� ¼ EL½N ijð1ÞjX ð1Þ ¼ l;X ð0Þ ¼ k�

which proves (31). In the reversible case the same reasoning shows that the Lagrange multipliers scale linearly
with s and therefore (31) also holds. h
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4.6. Enhanced MLE-method vs. MLE-method

The eigendecomposition approach has several advantages compared to the numerical considerations pro-
posed in [1]. Let d be the dimension of the discrete state space. As explained in Section 4.2, the computational
cost is reduced to Oðd5Þ thanks to the closed form expression (26). Moreover, there is no longer an explicit
dependency on the length of the time series. The second advantage is the exact computation of the conditional
expectations involved in the E-step of the EM-algorithm. The steps which introduce numerical errors are the
eigendecomposition and the computation of U�1. As before, the explicit inversion of U can be avoided by con-
sidering the left eigenvectors of eL. We are aware that the eigendecomposition of non-symmetric matrices can
be ill-conditioned, but any reliable numerical solver should indicate this. Nevertheless, the computational cost
of both steps ðOðd3ÞÞ and their numerical stability are superior compared to any numerical approximation
scheme for solving the ODEs in (22).

5. Numerical examples

5.1. Preparatory considerations

In order to compare the performance of the quadratic programming approach (QP) and the maximum like-
lihood method (MLE), these approaches are now applied to a series of model problems. A comparison with
the resolvent method is omitted because, as we have seen above, this method does not respect the generator
constraints and produces invalid estimates eL 62 G when no generator exists. A rather straightforward test
would proceed as follows:

(1) Choose an arbitrary generator L 2 G and a time lag s.
(2) Compute the corresponding transition matrix P(s) = exp(sL).
(3) Produce a time series Y = {y0 = X(t0), . . .,yN = X(tN)} by sampling from P(s).
(4) Pass this data to each of the two methods and compute an estimate eL � L.
(5) Compare the errors of the two approaches.

Although such a test seems to be somewhat reasonable, we will not use this procedure. The reason for our
refusal is the fact that the time series produced in step 3 is just a single realization. Hence, the result of this test
is random, too, and applying the test several times to the methods yields different results even though the input
L remains unchanged. In fact, both methods are affected by the sampling error
kP ðsÞ � bP k with P̂ ¼ ðp̂ijÞi;j and p̂ij ¼
cijPd
j¼1cij

: ð32Þ
(Here and below, i Æ i denotes the matrix 2-norm.) Roughly speaking, the sampling error indicates how well the
frequency matrix of a time series ‘‘represents’’ the underlying transition matrix. In the limit N!1 one may
expect the sampling error to vanish, but for a finite number of observations the deviation can be considerable.
Since the outcome of a numerical method cannot be better than the input data, the error of both methods are
bounded from below by the sampling error.

Therefore, our numerical experiments are designed in a different way:

(1) (a) Choose a generator L 2 G and a time lag s and compute the corresponding transition matrix
P(s) = exp(sL),

or

(b) choose a transition matrix P. This allows to test the performance of the methods in situations where
no underlying generator exists. In this case, the time lag does not matter, and we can set s = 1.

(2) Define a virtual frequency matrix by multiplying each row of the transition matrix P(s) with the corre-
sponding entry of the stationary distribution p = (pi),i 2 S and the length N of the (virtual) time series:
cij ¼ roundðNpipijÞ: ð33Þ
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This is the frequency matrix which, up to rounding errors, reflects the underlying transition matrix in an
optimal way.

(3) Based on the virtual frequency matrix, define the virtual transition matrix
bP virt ¼ ðp̂ijÞi;j and p̂ij ¼
cijPd
j¼1cij

ð34Þ
and compute an estimate eL � L for the generator.
(4) For both methods, compute and compare the errors:
(a) keL � Lk (only if L is available, i.e. if variant (a) of step 1 was used).
(b) kP ðsÞ � expðseLÞk.
(c) kbP virt � expðseLÞk with bP virt defined in (34).
The advantage of this approach to numerical experiments is illustrated by a simple example in Appendix A,
cf. Section A.2.

Of course, the choice of the initial value L0 for the MLE-method is crucial for the convergence. If the matrix
logarithm of bP virt exists, then a good initial value L0 can easily be obtained by taking the absolute values of the
off-diagonal entries of logðbP virtÞ=s and setting the diagonal entries to the corresponding negative row sums,
respectively.

5.2. Transition matrix with underlying generator

In a first example we follow variant (a) of step 1 and consider the generator
L¼

�4:293 0:678 0:301 0:819 0:592 0:149 0:543 0:411 0:774 0:023

0:033 �3:833 0:633 0:260 0:636 0:878 0:485 0:527 0:147 0:231

0:857 0:995 �5:466 0:704 0:532 0:021 0:441 0:920 0:148 0:845

0:682 0:499 0:005 �4:691 0:208 0:923 0:626 0:379 0:639 0:726

0:801 0:430 0:816 0:082 �4:268 0:632 0:077 0:638 0:093 0:694

0:917 0:829 0:690 0:875 0:241 �5:584 0:544 0:173 0:928 0:383

0:388 0:116 0:981 0:077 0:720 0:632 �4:667 0:785 0:485 0:479

0:472 0:598 0:069 0:741 0:400 0:753 0:270 �4:435 0:163 0:967

0:088 0:221 0:045 0:125 0:394 0:769 0:291 0:776 �3:495 0:783

0:925 0:398 0:740 0:443 0:411 0:808 0:822 0:342 0:131 �5:022

0BBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCA

2G:

ð35Þ

Based on the exact transition matrix P(s) with s = 0.2, we computed the virtual transition matrixbP virt;N ¼ 1010 via (34) and estimated the generator with both methods. The enhanced MLE-method (3)
stopped after 1132 iteration steps because the increment-based stopping criterion keLk � eLk�1k 6 tol with
tol = 10�7 had been met. Fig. 1 shows the error of eLMLE with respect to L (35) as a function of the iteration
steps.

Obviously, the convergence of the enhanced MLE-method is very slow. In contrast to the MLE-method,
the QP-method converged after only a few iteration steps. In Table 1, the errors of both approaches are com-
pared. The QP-approach approximates the original generator clearly better than the enhanced MLE-method.
This is, however, not surprising because it has to be taken into account that the QP-approach approximates
the eigendecomposition of bP virt and for the length N = 1010 of a virtual time series the difference between the
exact and the virtual transition matrix is only kP ð0:2Þ � bP virtk ¼ 1:39 � 10�9.

Next, we investigate the influence of the sampling error on both estimation methods. Instead of considering
realizations of the Markov jump process, we compute estimations of L for a number of virtual time series of
increasing length N. Fig. 2 shows the resulting errors of eLMLE and eLQP with respect to the generator L (35) as a
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Fig. 1. Approximation error of eLMLE with respect to the generator L (35) as a function of the iteration steps.

Table 1
Approximation errors of the estimated generators eLQP and eLMLE with respect to the given generator (35), the exact transition matrix P(s)
and the transition matrix bP virt constructed via (34)

kL� eLk k expðsLÞ � expðseLÞk kbP virt � expðseLÞk
QP 2.07 · 10�8 1.39 · 10�9 1.18 · 10�14

MLE 1.88 · 10�5 1.19 · 10�6 1.19 · 10�6

Results for the time lag s = 0.2 and the length of the virtual time series N = 1010.

P. Metzner et al. / Journal of Computational Physics 227 (2007) 353–375 365
function of the length N of the virtual time series. It reveals that for a time series of a realistic length (N 6 107),
the errors of eLQP and eLMLE are almost identical. The fact that the error of the MLE-method remains larger
than 10�5 regardless of N is due to the chosen stopping criterion.

5.3. Transition matrix without underlying generator

In contrast to the first case both estimation procedures are now applied to a transition matrix which does
not possess a generator:
104 106 108 1010 1012
10

10

100

N

MLE

QP

Fig. 2. Graphs of the errors of eLMLE and eLQP with respect to the generator L (35), respectively, as a function of the length N of the virtual
time series. The error of the MLE-method remains larger than 10�5 regardless of N due to the stopping criterion keLk � eLk�1k 6 10�7.
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P ¼

0:6455 0:0376 0:0338 0:0394 0:0467 0:0626 0:0406 0:0032 0:0316 0:0591

0:0146 0:7924 0:0549 0:06 0:0103 0 0 0 0:0162 0:0516

0:0497 0:0656 0:7516 0:0698 0:0009 0 0 0 0:0469 0:0155

0:0208 0:0565 0:0577 0:7238 0:0615 0 0 0 0:022 0:0577

0:0376 0:0447 0:0394 0:061 0:7072 0 0 0 0:0666 0:0436

0:0105 0:0571 0:0258 0:0121 0:0208 0:7279 0:0322 0:0536 0:0507 0:0093

0 0 0 0:0699 0:0472 0:0161 0:7535 0:0692 0:0294 0:0148

0 0 0 0:019 0:0199 0:0406 0:0556 0:7701 0:0522 0:0425

0 0 0 0:0191 0:0355 0:0575 0:0045 0:0596 0:7762 0:0476

0 0 0 0:0657 0:0049 0:0398 0:0453 0:0329 0:033 0:7784

0BBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCA
62 P

ð36Þ

One can immediately verify via Theorem 2 cited in the Appendix that (36) cannot be generated since, e.g, the
state 6 is accessible from state 2 via state 1 but p2,6 = 0. As Table 2 shows, the errors of the estimated transition
matrices expðseLÞ are of the same order of magnitude and are larger than in the first example due to the addi-
tional difficulty that no generator exists.

The error kP � expðeLMLEÞk as a function of the first 10 iteration steps is shown in the upper panel of Fig. 3.
Surprisingly, the best accuracy is obtained after only one iteration, but the following iterations increase the
error again. The reason for this behavior is the fact that the MLE-method aims to maximizing the likelihood
instead of minimizing the error, and the graph of the discrete log-likelihood, depicted in the lower panel of
Fig. 3, clearly shows that the maximum likelihood was not attained after the first iteration.

In contrast to the first example, Fig. 4 shows that here increasing the length of the virtual time series does
not improve the estimation significantly in both methods.

5.4. Transition matrix with exact generator under perturbation

In the next example, we consider again the transition matrix P(s) with s = 0.2 which is generated by the
generator (35) given in the first example. In order to investigate the impact of perturbations due to, e.g., sam-
pling from a time series, we estimate a generator based on a perturbed transition matrix
P �ðsÞ ¼ expðsLÞ þ k�; k ¼ 0; . . . ; 19;
where � is the perturbation matrix
�¼ 10�5 �

4:055 �3:552 1:754 0:805 �4:090 �3:519 4:719 0:047 0:696 �0:917

3:104 �3:508 �1:609 2:874 1:319 �0:671 2:020 1:459 1:272 �6:261

�3:22 �0:978 �2:611 5:673 �3:653 2:386 5:726 �2:478 0:154 �0:993

4:467 �1:238 �5:225 1:944 �1:021 �3:496 2:433 �2:047 2:687 1:497

4:698 �4:188 �1:271 1:949 �4:191 �0:450 �0:850 3:649 �4:336 4:991

4:376 �2:336 �1:603 3:415 1:556 1:850 �4:529 �2:277 4:355 �4:808

1:200 �2:234 5:509 �4:121 �1:151 �0:133 �3:341 �3:631 4:118 3:785

2:836 �1:009 2:731 �3:009 �1:067 �4:559 2:699 2:614 3:194 �4:432

�1:478 4:040 �0:318 �3:722 �0:412 1:249 0:450 �2:992 �2:153 5:336

�1:460 �1:569 5:235 �0:772 �2:618 4:252 �2:006 �0:251 0:705 �1:514

0BBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCA
:

2
ximation errors of expðeLQPÞ and expðeLMLEÞ with respect to the given transition matrix (36) and the transition matrix bP virt

ucted via (34)

kP � expðseLÞk kbP virt � expðseLÞk
1.74 · 10�2 1.74 · 10�2

2.86 · 10�2 2.86 · 10�2

s of MLE-method for tol = 10�7.
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Fig. 3. Upper: error of expðeLMLEÞ with respect to the transition matrix P in (36) as a function of the first 10 iteration steps. Lower: the
discrete log-likelihood Ld as a function of the 10 first iteration steps.
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Fig. 4. The graphs of the errors of expðeLMLEÞ and expðeLQPÞ with respect to the transition matrix in (36), respectively, as a function of the
length N of the virtual time series.
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The upper panel of Fig. 5 shows the deviation of the estimated generators from the unperturbed generator as a
function of the perturbation factor k. The QP-method performs slightly better but both errors kL� eLQPk and
kL� eLMLEk are of the same order of magnitude. Furthermore, the errors scale linearly with the perturbation
factor k. This observation is plausible since for small perturbations the logarithm log(P + �) can be approx-
imated by logðP Þ þOð�Þ. The lower panel of Fig. 5 illustrates the behavior of the errors of the estimated tran-

sition matrices expðseLQPÞ and expðseLMLEÞ, respectively. A similar reasoning as above explains the linear
scaling.

Finally, we consider the error of the estimated transition matrices expðseLQPÞ and expðseLMLEÞ with respect
to the perturbed transition matrix P�(s) = exp(sL) + k�, depicted in Fig. 6. Notice that the error
kP �ðsÞ � expðseLÞk is bounded from above, namely
Fig. 5.
of the
transit
kP �ðsÞ � expðseLÞk 6 k expðsLÞ � expðseLÞk þ kk�k:

Indeed, Fig. 6 shows that both errors obey that bound. For the perturbation factors up to k = 8, the matrix
logarithm of P� is still a generator whereas for k = 9, . . ., 19 the perturbation is apparently high enough to de-
stroy the generator structure of the matrix logarithm of P�. However, the accuracy of both methods is again of
the same order of magnitude.
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Upper: approximation error of the generator estimates eLQP and eLMLE with respect to the unperturbed generator (35) as a function
perturbation factor k. Lower: error of the estimated transition matrices expðseLQPÞ and expðseLMLEÞ with respect to the unperturbed
ion matrix exp(sL) as a function of the perturbation factor k. Results for s = 0.2.
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Fig. 6. Error of the estimated transition matrices expðseLQPÞ and expðseLMLEÞ with respect to the perturbed transition matrix P�(s) = exp(s
L) + k� as a function of the perturbation factor k. The upper bound was computed via eLMLE.
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5.5. Application to a time series from molecular dynamics

In the last example, we apply both methods to a time series of two torsion angles extracted from a numer-
ical simulation of a trialanine dipeptide analogue. The ball-and-stick representation of this molecule together
with the two considered torsion angles U and W is shown in the upper panel of Fig. 7. The considered time
series was generated in vacuum at a temperature of 750 K using the Hybrid Monte Carlo method [8] with
544.500 steps and with the GROMACS force field [9,10]. The integration of the subtrajectories of the Monte
Carlo proposal step were realized with 100 1-fs time steps of the Verlet integration scheme which results in the
time lag s = 10�13.

We are interested in identifying conformations of the trialanine molecule. A conformation of a molecule is
understood as a mean geometric structure of the molecule which is conserved on a large time scale compared
to the fastest molecular motions. From the dynamical point of view, a conformation typically persists for a
long time (again compared to the fastest molecular motions) such that the associated subset of configurations
is metastable. The lower panel of Fig. 7 shows the projection of the time series onto the torsion angles U and W
which reveals the metastable behavior. The Ramachandran plot of the time series, given in the upper panel of
Fig. 8, illustrates the dependency among both torsion angles and indicates that the trialanine molecule attains
three different conformations.

The metastability analysis via the transfer operator approach is based on a box-discretization of the torsion
angle space. Identifying each element of the given time series with the box by which it is covered, we built up a
discrete transition matrix P by counting the transitions between the boxes. The enhanced properties of the
transition matrix P, namely the almost constant levels in the dominant eigenvectors of P, allows to identify
conformations via Perron cluster cluster analysis (PCCA) [11,12].

To gain further insight into the dynamics of a molecule, the transitions between its conformations and the
corresponding rates have to be considered. A recently developed framework, the Transition Path Theory
(TPT), provides a statistical theory to describe transitions in Markov processes [13,14] and allows to compute,
e.g., transitions rates between conformations. The basic object in TPT is the committor function qAB with
respect to two disjoint subsets A and B of the state space. Let i 2 S denote a state, then qAB(i) is the probability
to go rather to B than to A conditioned on the process has started in i. For a Markov jump process, it is shown
in [15] that the committor qAB(i),i 2 S satisfies8
ðLqABÞðiÞ ¼ 0; i 2 S n ðA [ BÞ;
qABðiÞ ¼ 0; i 2 A;

qABðiÞ ¼ 1; i 2 B;

><>: ð37Þ
where L is the generator of the Markov jump process.
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We discretized the two-dimensional torsion angle space into 9 · 9 boxes and estimated a generator with
respect to the transition matrix bP (compare (6)) with both methods on the resulting discrete state space with
54 states (i.e. 54 discretization boxes were visited by the time series). Moreover, instead of using the time lag
s = 10�13, we performed the estimations with respect to s = 1 and scaled the resulting generators eLQP andeLMLE afterwards (compare Section 4.5). The QP-method took 4000 iteration steps until it converged whereas
the stopping criterion keLkþ1 � eLkk < 10�3 of the enhanced MLE-method was satisfied after 1135 iterations.
Although the MLE-method is not designed to approximate the spectral properties of the transition matrixbP , one can clearly see in Table 3 that it reproduced the spectral gap which indicates the number of metastable
sets. Furthermore, the three eigenvectors corresponding to the three largest eigenvalues of eLMLE allowed a rea-
sonably decomposition of the state space into three metastable sets via PCCA, as depicted in the lower panel
of Fig. 8.

We end this example by showing that the enhanced MLE-method can even estimate a generator for a
state space with more than 200 states. We considered a 20 · 20 box discretization of the torsion angle space
which results in a state space of 219 visited boxes. In Table 4 we compare again the four largest eigenvalues

of the transition matrix bP with those of eP ¼ expðseLMLEÞ. The spectral gap as well as the eigenvalues are well
reproduced. The resulting decomposition of the state space via PCCA is shown in the lower panel of Fig. 9.
For sake of visualization, we illustrate in the upper panel of Fig. 10 the Gibbs-energy, �logp, where
p = (pi),i 2 S is the stationary distribution of the Markov jump process computed via pTLMLE = 0. The
lower panel shows a decomposition of the torsion angles space into the two sets {i 2 S:qAB(i) 6 0.5}
(depicted by the light grey boxes) and {i 2 S:qAB(i) > 0.5} (the dark boxes) where qAB is the committor func-
tion computed via (37). The set A was defined as the box in which the stationary distribution restricted on
180
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Fig. 8. Upper: Ramachandran plot of the torsion angles. Lower: Decomposition of the torsion angle state space into three metastable sets
via PCCA. Results for an equidistant discretization of the torsion angle space into 9 · 9 boxes.

Table 3
The first four largest eigenvalues of the transition matrix bP and the transition matrices computed from the estimated generator eLQP andeLMLE

k1 k2 k3 k4bP ðsÞ 1 0.9932 0.9928 0.7560
expðseLQPÞ 1 0.9918 0.9913 0.7231
expðseLMLEÞ 1 0.9929 0.9920 0.7290

The gap between the third and fourth eigenvalue suggests a decomposition of the torsion angle space into three metastable sets. Results for
a 9 · 9 box-discretization.

Table 4
The four largest eigenvalues of the transition matrix P̂ ðsÞ and the transition matrices computed from the estimated generator eLMLE

k1 k2 k3 k4

P̂ ðsÞ 1 0.9955 0.9952 0.8543
expðseLMLEÞ 1 0.9951 0.9949 0.8440

Results for an equidistant 20 · 20 box-discretization of the torsion angle space.
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the lower conformation attains its maximum. The set B was chosen analogously with respect to the upper
conformation. As one can see, the committor sharply separates the lower conformation from the upper
conformations.
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Fig. 9. Upper: box plot of the right eigenvector corresponding to the second largest eigenvalue of LMLE. The three almost constant levels
indicate the three metastable sets. Lower: decomposition of the torsion angle state space via PCCA into three metastable sets. Results for
an equidistant 20 · 20 box-discretization of the torsion angle space.
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6. Discussion and summary

To sum up, we discuss the pros and cons of the QP-method and the enhanced MLE-method. Concerning
the accuracy of the estimates, the extensive numerical tests presented in the previous section did not reveal any
decisive difference between both approaches. Only in case of an extremely long time series produced by a tran-
sition matrix with underlying generator, the QP-method produced significantly better results than the MLE-
method. This case, however, can be considered as somewhat artificial because a time series with such a huge
number of observations is rarely available in real-life applications. In the other tests examples, the QP-method
still produced slightly better results than the MLE-method, but the difference was almost negligible. In the
trialanine example, the leading eigenvalues of the generator where slightly better estimated by the MLE-
method than by the QP-method, but this could possibly be changed by increasing the corresponding weights
ak, bk, and ck in the functional (10).

The similar error behavior of the two methods could possibly be explained by the fact that both methods
are affected by the sampling error, i.e., by the error inherent in the finite and noisy time-series data or the fre-
quency matrix, respectively. We suppose that the sampling error is the limiting factor of both approaches.

From the view point of convergence, the QP-methods is superior because due to the quadratic objective
function, it converges to an unique maximum, whereas the (enhanced) MLE-method may only converge to
a local rather than global maximum. Furthermore, the convergence rate of the (enhanced) MLE-method is
very slow, but we have observed that a sufficient accuracy was already attained after few iterations. However,
each step in the iteration in both techniques involves very different operations (a full eigendecomposition in
one case, a quadratic programming step in the other), hence the cost of each of these steps is very different
as well.
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Fig. 10. Upper: box plot of the Gibbs-energy �logpi where p is the stationary distribution computed via pTLMLE = 0. Lower:
decomposition of the torsion angles space into the two sets {i 2 S:qAB(i) 6 0.5} (depicted by the light grey boxes) and {i 2 S:qAB(i) > 0.5}
(the dark boxes), where qAB is the committor function computed via (37). Results for an equidistant 20 · 20 box-discretization of the
torsion angle space.
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In the scope of this article, we have restricted ourselves to equidistant observation times. We remark that
the QP-method in the presented form cannot simply be applied to time series with varying time lags, because in
this situation the required transition matrix estimate is not available. The enhanced MLE-method, however,
allows the efficient treatment of the case of non-equidistant observation times tk by two slight modifications.
Let {s1, . . . sr},r > 1 be the set of the different observation time lags with respect to the data Y and denote by
C(ss),s = 1, . . ., r the associated frequency matrices which provide the number of transitions between states
with respect to the time lag ss, respectively. Then the conditional expectations in (17) can again be expressed
as sums, e.g.,
EL0
½RiðT ÞjY � ¼

Xr

s¼1

Xd

k;l¼1

cklðssÞEL0
½RiðssÞjX ðssÞ ¼ l;X ð0Þ ¼ k�:
Finally, the exact computation of the conditional expectations with respect to the different time lags requires
the additional computation of the matrices W(s1), . . .,W(sr) (cf. (24)) which only has to be performed once in
each EM-iteration step. That approach will be presented in a forthcoming paper.
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Appendix A

A.1. Two theorems on the existence of generators

The following Theorems are found in [16]. They give sufficient conditions for the existence of a generator of
a given transition matrix.

Theorem 2. Let P be a transition matrix and suppose that

(a) det(P) 6 0, or

(b) detðP Þ >
Q

ipii, or
(c) there are states i and j such that j is accessible from i, but pij = 0.

Then, there is no generator L 2 G such that P = exp(L).

Theorem 3. Let P be a transition matrix.

(a) If detðP Þ > 1
2
, then P has at most one generator.

(b) If detðPÞ > 1
2

and kP � Ik < 1
2

(using any operator norm), then the only possible generator for P is the prin-

cipal branch of the logarithm of P.

(c) If P has distinct eigenvalues and det(P) > e�p, then the only possible generator for P is the principal branch

of the logarithm of P.
A.2. A simple example illustrating the effect of sampling errors

This example illustrates the influence of the sampling error on the optimal generator estimate; cf. the dis-
cussion in Section 5.1. The transition matrix of the generator
L ¼
�0:2 0:2

0:2 �0:2

� �

with respect to the time lag s = 1 is
PðsÞ ¼
0:8352 0:1648

0:1648 0:8352

� �
:

Suppose that sampling according to the transition matrix produces the time series
time, tn
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10

state, X(tn)
 1
 1
 2
 2
 1
 1
 1
 1
 2
 2
 2
such that the corresponding frequency matrix is
C ¼
4 2

3 1

� �
:

According to this data, the transition matrix seems to be
bP ¼ 2=3 1=3

3=4 1=4

� �
ðA:1Þ
and since bP ¼ expðbLÞ with
bL � �0:5003 0:5003

0:3752 �0:3752

� �
2 G ðA:2Þ



the best result we can expect to obtain based on the time series is bL instead of L. The errors kbP � Pk � 0:2670
and kbL � Lk � 0:4916 are caused by the time series and cannot be avoided by the two methods. However,
these errors decrease if, according to the second test procedure, the frequency matrix is replaced by the virtual
frequency matrix (33). Since in our example the stationary distribution is p = (0.5,0.5), one obtains
C ¼
4 1

1 4

� �
:

The corresponding transition matrix
bP virt ¼
0:8 0:2

0:2 0:8

� �

is obviously a better approximation of the true transition matrix P than (A.1), and the generator estimate
eL ¼ logðbP virtÞ �
�0:2554 0:2554

0:2554 �0:2554

� �

is evidently better than (A.2). In fact, the new errors are only kP � bP virtk � 0:0703 and kL� eLk � 0:1108.
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